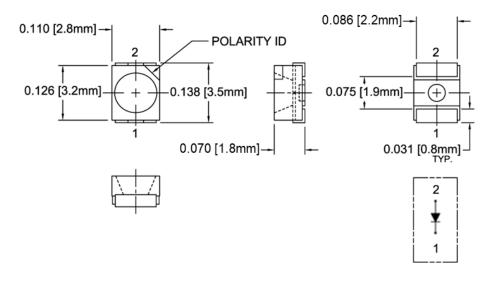
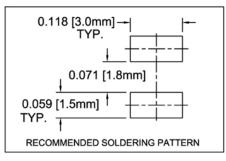


SMTL2-UYC


- Industry Standard PLCC2 Footprint
- ♦ Low Profile Package
- High Luminous Intensity
- Wide Viewing Angle
- High Power Efficiency



Bivar SMTL2 LED is offered in an industry standard PLCC2 package with high luminous intensity and wide viewing angles. The miniature package is ideal for small scale applications such as illumination, general indication, and backlighting. Low power consumption and excellent long life reliability are suitable for battery powered equipment. The robust package is ideal for harsh working environments and can be used in clusters for high luminous applications. Wide variety of color and intensity combinations are available to meet any illumination needs. Bivar SMTL2 LED is packaged in standard tape and reels for pick and place assemblies.

Part Number	Material	Emitted Color	Lumen Typ. mcd	Lens Color	Viewing Angle
SMTL2-UYC	AlGaInP	Ultra Yellow	1200	Water Clear	120°

Outline Dimensions

Outline Drawings Notes:

- 1. All dimensions are in inches [millimeters].
- 2. Standard tolerance: ±0.010" unless otherwise noted.

Absolute Maximum Ratings

 $T_A = 25$ °C unless otherwise noted

Power Dissipation	78 mW
Continuous Forward Current	30 mA
Peak Forward Current ¹	100 mA
Reverse Voltage	5 V
Derating Linear From 25°C	0.4 mA/°C
Operating Temperature Range	-40 ~ +85°C
Storage Temperature Range	-40 ~ +85°C
Lead Soldering Temperature (1.6 mm from body) ²	260°C

Notes: 1. 10% Duty Cycle, Pulse Width ≤ 0.1 msec.

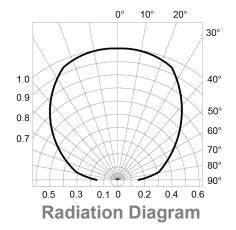
2. Solder time less than 5 seconds at temperature extreme.

Handling: Reflow soldering must not be performed more than twice. Hand soldering must not be performed more than once.

Sensitive to static electricity or surge voltage. ESD can damage the die and impair reliability.

Electrical Characteristics

 $T_A = 25$ °C & $I_F = 20$ mA unless otherwise noted


Emitting Color	Forward Voltage (V) ¹		Recommend Forward Current (mA)	Reverse Current (µA) V _R =5V	Dominant Wavelength (nm) ²		Luminous Intensity (mcd) ³		Viewing Angle 2 Θ ½ (deg)	
	TYP	MAX	TYP	MAX	MIN	TYP	MAX	MIN	TYP	TYP
Ultra Yellow	2.0	2.3	20	10	586	590	594	521	1200	120

Notes: 1. Tolerance of Forward Voltage: ±0.1V.

- 2. Tolerance of Dominant Wavelength: -0.1nm of MIN & +0.1nm of MAX.
- 3. Tolerance of Luminous Intensity: ±15%.

Directivity Radiation

 $T_A = 25$ °C unless otherwise noted

Bivar reserves the right to make changes at any time without notice

Typical Electrical / Optical Characteristics Curves

 $T_A = 25$ °C unless otherwise noted

Relative Spectrum Emission I $_{rel}$ = f (I), T $_A$ = 25°C , I $_F$ = 20 mA V(I) = Standard eye response curve

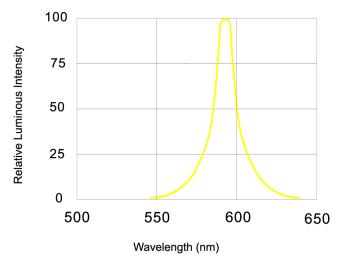


Fig.1 Relative Luminous Intensity vs. Wavelength

Forward Current $I_F = f (V_F)$ $T_A = 25$ °C

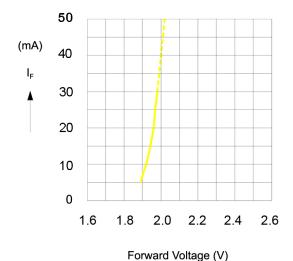


Fig.2 Forward Current vs. Forward Voltage

Relative Luminous Intensity I_v/I_v (20 mA) = f (I_F) $T_A = 25$ °C

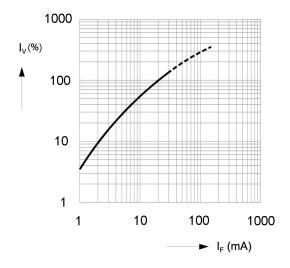
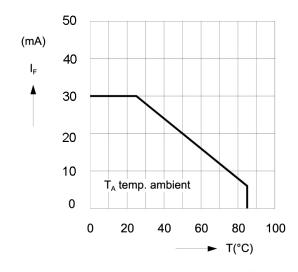



Fig.3 Relative Luminous Intensity vs. Forward Current

Forward Current I_F (mA)

Ambient Temperature vs. Allowable Forward Current

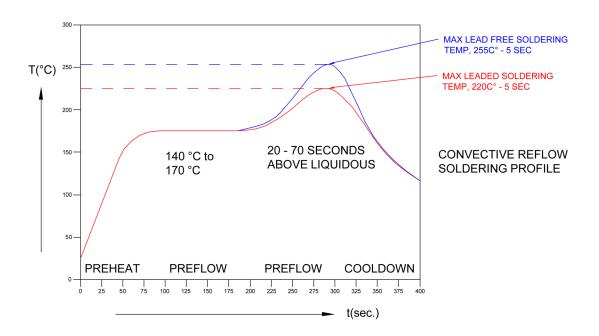
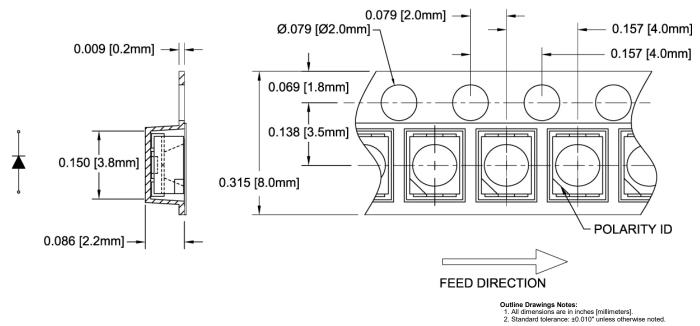
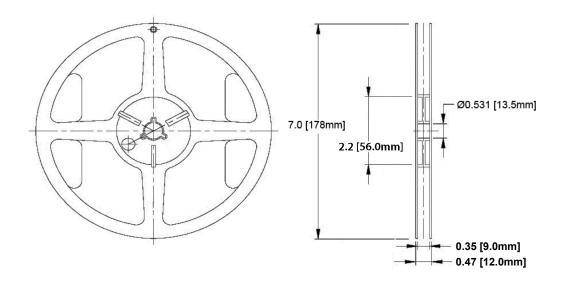

Ambient Temperature T_A (°C)

Fig.4 Forward Current vs. Ambient Temperature

Bivar reserves the right to make changes at any time without notice



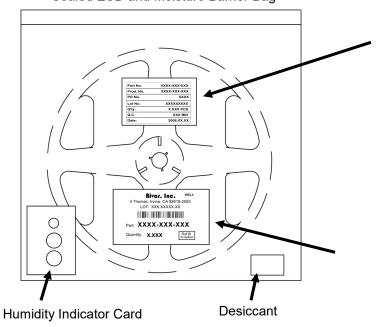
Recommended Soldering Conditions


Tape and Reel Dimensions

Note: 2000 pcs/Reel

Bivar reserves the right to make changes at any time without notice

Outline Drawings Notes:


- 1. All dimensions are in inches [millimeters].
- 2. Standard tolerance unless otherwise noted: X.XXX ± 0.010"

X.X ± 0.1"

Packaging and Labeling Plan

Note: 1 Reel / Bag

Sealed ESD and Moisture Barrier Bag

Part No.	XXXX-XXX-XXX				
Prod. No.	XXXX-XXX-XXX				
PO No.	xxxx				
Lot No.	XXXXXXXX				
Q'ty:	X.XXX PCS				
Q.C.	XXX BIN				
Date:	2008.XX.XX				

Internal Quality Control Label

Bivar. Inc.

MSL4

4 Thomas, Irvine, CA 92618-2593 LOT: XXX.XXXXXXXX

Part: XXXX-XXX

Quantity: XXXX

RoHS Compliant

Bivar Standard Packaging Label

REVISION HISTORY						
Rev	Description	Date	Approved			
Α	Engineering Release	02/26/2016	Jeffrey Chiang			
В	Chip Die Change	05/06/2024	Ricardo Pereyra			
С	Polarity Change LED Circuit Image	06/27/2024	Ricardo Pereyra			